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Decaying magnetohydrodynamics: Effects of initial conditions

Abhik Basu*
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India

~Received 5 August 1999!

We study the effects of homogenous and isotropic initial conditions on decaying magnetohydrodynamics
~MHD!. We show that for an initial distribution of velocity and magnetic-field fluctuations, appropriately
defined structure functions decay as a power law in time. We also show that for a suitable choice of initial cross
correlations between velocity and magnetic fields even-order structure functions acquire anomalous scaling in
time where as scaling exponents of the odd-order structure functions remain unchanged. We discuss our results
in the context of fully developed MHD turbulence.

PACS number~s!: 47.27.Gs, 05.45.2a, 47.65.1a
in
n
ui

ki

ff.
i

d
l
ca
a-

-
id
th

hi
ur
th
ib

at

ll

u-
ith
r

-

e
a

tro-
ll

-
er-
d: It
is-
e
t,
e-

re
uid
d
is
ry

e

at,
nc-
a
In

the
is
in

es

s-
ow
ity
me
e-
e.

h-
o-
no

ag-
nd
r
the
ela-ga
I. INTRODUCTION

In the absence of external forcing the fluid cannot ma
tain its steady state because of the continous dissipatio
energy. The decay of kinetic energy in incompressible fl
turbulence has been explored in several studies~see, e.g.,
@1–3#!. These studies, principally numerical, indicate that
netic energy decays as;(t2t0)2h, where t0 is the initial
time, i.e., the time when the initial forcing is switched o
The value ofh seems to depend on the initial state. Sim
larly, recent numerical studies of decaying magnetohydro
namics~MHD! turbulence@3–6# also suggest that the tota
energy decays as a power of time. The phenomena of de
ing MHD turbulence is observed in many different situ
tions. Star-forming clouds are astrophysical examples@3#.

Decay of MHD turbulence in a shell model

In Ref. @7# we described a shell model for MHD turbu
lence, which has all the conservation laws in the invisc
unforced limit, has the right symmetries and reduces to
well-known Gledzer-Ohkitani-Yamada~GOY! shell model
for fluid turbulence in absence of any magnetic field. In t
paper we use our shell model to study decaying MHD t
bulence. We begin by solving this set of equations with
external forces and by using the numerical method descr
there. We evolve the shell velocitiesvn and magnetic fields
bn till we achieve the nonequilibrium, statistical steady st
whose properties are described in Ref.@7#. Once we attain
this state, say at a timet5tss, we use the last set of she
velocities and magnetic fields, i.e.,vn(tss) andbn(tss), as the
initial condition for our shell-model study of decaying turb
lence in which we solve our shell-model equations but w
all the forcing terms set equal to zero. We then use the
sulting time series forvn and bn to determine the total en
ergy E(t)[Sk^uv(k,t)u2&1^ub(k,t)u2& and the total cross
helicity Hc(t)[^uv(k,t)•b(k,t)u& where the origin of time is
taken to be zero. We find thatE(t);Hc(t);t2p, with p
.1.2; this is illustrated in the log-log plot of Fig. 1. As w
have noted above, it is relevant for initial conditions th

*Also at Poorna Prajna Institute of Scientific Research, Ban
lore, India.
PRE 611063-651X/2000/61~2!/1407~10!/$15.00
-
of
d

-

-
y-

y-

,
e

s
-
e
ed

e

e-

t

have the correct statistical properties of homogenous, iso
pic MHD turbulence, which are well decribed by our she
model.

In a recent paper@8# the effects of random initial condi
tions on the decaying solutions of the unforced Navi
Stokes equation with hyperviscosity have been discusse
has been shown that, for an initially Gaussian velocity d
tribution, equal-time two-point correlation functions lik
^u(x,t)u(x,t)& decay as;t21. It has also been shown tha
for this particular choice of initial conditions, the theory r
mains finite~in a field-theoretic sense! just by renormaliza-
tion of the two-point vertex functions. However, it is mo
relevant to explore the statistical properties of decaying fl
turbulence with ordinary viscosity. It is also important to fin
out how the introduction of magnetic fields influences th
decay. In this paper we study decaying MHD with ordina
viscosity; we work with both the three-dimensional~3D!
MHD equations and ad-dimensional generalization of th
1D MHD model introduced in Ref.@9#. We show that both
these models give similar results. In particular, we show th
in both these models, appropriately defined structure fu
tions decay with a power law in time; this is modulated by
scaling function whose form depends on the initial state.
Sec. II, we describe the equations we work with and
initial conditions we use. For most of the calculations in th
Section, we choose initial correlations which are analytic
the low-wave-number limit. We choose ordinary viscositi
for both velocity and magnetic fields. We calculate thedy-
namic exponent zand show that it is unaffected by the pre
ence of the nonlinearities, i.e., it remains 2. We next sh
that if there is no initial cross correlation between veloc
and magnetic fields, correlation functions defined at the sa
spatial point decay with power laws in time and, cons
quently, two-point structure functions also decay likewis
Also, multipoint correlation functions~and structure func-
tions! exhibit similar behavior, with simple~and not anoma-
lous! scaling in time. In other words, the exponents for hig
order structure functions are simply related to those of tw
point functions. Another interesting feature is that there is
change in the exponents with the introduction of the m
netic field ~i.e., the exponents are the same for fluid a
MHD turbulence!; only the amplitudes of the correlation o
structure functions change. In the Sec. III we show that in
presence of suitable cross correlations higher-order corr
tions ~and consequently structure functions! decay more
-
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1408 PRE 61ABHIK BASU
slowly than when there is no cross correlation, i.e., they d
play anomalous scaling. In Sec. IV we extend and disc
our results in the context of the decay of fully develop
MHD turbulence. In Sec. V we conclude and compare res
obtained from both 3D MHD and our simplified model.

II. DECAYING MHD TURBULENCE: THE CASE
OF ZERO INITIAL CROSS CORRELATION

OF THE VELOCITY AND MAGNETIC FIELDS

A. Construction of a simplified model

The dynamical equations which govern the time evo
tions of the velocity and magnetic fields in a magnetiz
fluid are given by the equations of magnetohydrodynam
namely,

]y

]t
1~v•“ !v52

“p

r
1

~“3b!3b

4p
1n¹2v1fv , ~1!

]b

]t
5“3~v3b!1m¹2b1fb , ~2!

wherev andb are the velocity and the magnetic fields,n and
m are fluid and magnetic viscosities,p andr represent pres
sure and density, andfv and fb are external forces. We als
impose the incompressibility condition“•v50 and the
divergence-free condition on the magnetic field“•b50. In
the absence of magnetic fields the MHD equations reduc
usual Navier-Stokes equation for fluid turbulence.

We now briefly present the ideas that go into the constr
tion of the model, which has already been discussed in de
in @9#. Since this model is an extension of Burgers equat
for fluid dynamics to MHD, it should have the followin
properties:

~i! Both the equations should be Galilean invariant.

FIG. 1. A log-log plot of decay of total energy and cross helic
versus time.
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~ii ! The equations should be invariant undert→t; x
→2x, v→2v, andb→b, i.e., the velocity field is odd par
ity and the magnetic field is even parity.

~iii ! The fields areirrotational vector fields ind dimen-
sion ~similar to Burgers velocity field!.

~iv! The equations in the ideal limit, i.e., in the absence
any viscosity and any external forcing should conserve
the scalar conserved quantities of 3D MHD namely the to
energy and the cross helicity. The third conserved quan
i.e., the magnetic helicity is zero for irrotational fields.

The above considerations lead to the following mod
equations:

]y

]t
1

1

2
“v21

1

2
“b25n¹2v1fv , ~3!

]b

]t
1“~v•b!5m¹2b1fb , ~4!

whose relation to the 3D MHD equations is the same as
relation of the Burgers equation to the Navier-Stokes eq
tion. Herev andb are the velocity and magnetic fields wit
magnitudesv and b, respectively. These fields areirrota-
tional, i.e.,“3v50 and“3b50. These equations togethe
conserve the total energy 1/2*(v21b2)ddx and cross helic-
ity *v•bddx.

B. Choice of initial conditions

We havê ui(k,t50)&5^bi(k,t50)&50 by homogeneity
and isotropy. We choose the initial correlations to have
simple analytic forms

^v i~k,t50!v j~k8,t50!&5Duukikjd~k1k8!, ~5!

^bi~k,t50!bj~k8,t50!&5Dbbkikjd~k1k8!, ~6!

and

^v i~k,t50! ibj~k8,t50!&5Di j ~k!d~k1k8!. ~7!

In k space the 3D MHD equations are

] tv i~p!1 iM i jk~p!(
q

v j~q!vk~p2q!

5 iM i j l ~p!(
q

bj~q!bl~p2q!/4pr2np2v i~p!1 f i~p!,

~8!

] tbi~p!52S ip3(
q

v~q!3b~p2q! D i

2mp2bi~p!1gi~p!. ~9!

The quantitiesMi jl (k)5Pi j kl1Pil kj appear to include the
incompressibility,Pi j (k)5(d i j 2kikj /k2) is the transverse
projection operator, and wave-vector argumentsp,q,k indi-
cate spatial Fourier transforms. The initial conditions we u
for 3D MHD are

^ui~k,t50!uj~k8,t50!&5Duuk
2Pi j ~k!d~k1k8!, ~10!
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^bi~k,t50!bj~k8,t50!&5Dbbk
2Pi j ~k!d~k1k8!, ~11!

^ui~k,t50!bj~k8,t50!&5Di j ~k!d~k1k8!, ~12!

which ensure the divergence-free conditions, namely,

ki^ui~k!uj~2k!&50, ~13!

ki^bi~k!bj~2k!&50. ~14!

We discuss the structure ofDi j later. For the time being, we
chooseDi j 50. These simple initial conditions, which ar
analytic in thek→0 limit, are enough to elucidate the issu
raised in this section.

C. Calculation of effective correlation and structure functions
within a one-loop perturbation theory: Temporal scaling

The formal solutions of the Eqs.~3! and~4! are given by

ul~k,t !5e2nk2tul~k,0!2
i

2
klE

0

t

dt8E ddp

3exp@2n~ t2t8!k2#exp$2nt8@p21~k2p!2#%

3@um~p,0!um~k2p,0!

1exp$2mt8@p21~k2p!2#%

3bm~p,0!bm~k2p,0!#1¯ , ~15!

bl~k,t !5e2mk2tbl~k,0!2 ik lE
0

t

dt8E ddp

3exp@2m~ t2t8!k2#exp$2t8@np21m~k2p!2#%

3@um~p,0!bm~k2p,0!#1¯, ~16!

where ellipsis refer to higher-order terms Similarly the fo
mal solutions of the 3D MHD Eqs.~9! and ~9! are given by

ul~k,t !5e2nk2tul~k,0!2
i

2
Ml jsE

0

t

dt8E ddp

3exp@2n~ t2t8!k2#exp$2nt8@p21~k2p!2#%

3@uj~p,0!us~k2p,0!
ec

m
r

h

2exp$2mt8@p21~k2p!2#%bj~p,0!bs~k2p,0!#

1¯, ~17!

bl~k,t !5e2mk2tbl~k,0!2 ikmE
0

t

dt8E ddp

3exp@2m~ t2t8!k2#exp$2t8@np21m~k2p!2#%

3@um~p,0!bl~k2p,0!2ul~p,0!bm~k2p,0!#1¯,

~18!

where the ellipsis in refer to higher-order terms in the ser
We use bare perturbation theory, i.e., after truncating
series at a particular order, allv andb are to be replaced by
their bare values, i.e., byG0

uu(t50) andG0
bb(t50), respec-

tively, whereG0
u(k,t)5e2nk2t andG0

b(k,t)5e2mk2t. This is
similar to Ref. @10#. In the steady state of fluid or MHD
turbulence, thedynamic exponent zis determined by the
form of the correlations of the driving noise and dimensio
ality of the space. For example, when driven by noise co
lations of the formk23 ~in 3D NS!, one findsz ~within a
one-loop dynamic renormalization group calculation! to be
2/3 @11#. What is z when we study decaying MHD turbu
lence? We calculate this within a one-loop diagramma
perturbation theory: In the bare theory~i.e., when the non-
linear terms are absent! z52. If the one-loop corrections to
the response functions~i.e., to the viscosities! have infrared
divergence at zero external frequency, thenz,2; otherwise
z52. The diagrams shown in Fig. 2 contribute at the on
loop level in renormalization of the fluid viscosityn.

Similar diagrams renormalizem. The effective one-loop
fluid viscosity is given by

FIG. 2. One-loop diagrams contributing to the renormalizat
of n.
1

ñk2 5
1

nk2 1
Duu

nk2 E d3p
plpmk•~k2p!

2nk•p F 1

2np222nk•p S 12
k2

n@p21~k2p!2# D2
1

2np2 S 12
k2

2np2D G
1

Dbb

nk2 E d3p
plpmk•~k2p!

2mk•p F 1

2mp2 S 12
nk2

2mp2D2
1

2mp2 S 12
nk2

2mp2D G . ~19!
g-

oss

ute
We see that, in the long-wavelength limit, one-loop corr
tions have no infrared divergence atd53; in other wordsz
remains 2. In the case of the 3D MHD equations, the for
of the integrals remain unchanged, only changes appea
the coefficients of the integrals where, in place ofplpm ,
appropriate projection operators are present. Thus again t
-

s
in

ere

is no diagrammatic correction to viscosities in the lon
wavelength limit in 3D MHD. Hence the exponentz is un-
affected by the nonlinear terms. Therefore, without any l
of generality, we can putn5m51.

We now calculate the effectiveDuu andDbb for d53 at
the one-loop level. The diagrams shown in Fig. 3 contrib
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at the one-loop level toDuu , These contributions are propo
tional to

kikj~Duu
2 1Dbb

2 !E d3p
p2p2~p22k2!2

k4p8

;kikj~Duu
2 1Dbb

2 !EL

d3p, ~20!

which does not have any infrared divergence inany dimen-
sion. The one-loop diagram contributing toDbb has the same
form. For 3D MHD the forms of the one-loop integrals d
not change; only the coefficients have appropriate factor
projection operators instead ofkikj . On purely dimensiona
grounds ford53,

^ui~x,t !uj~x,t !&;E d3k^ui~k,t !uj~2k,t !&

;DuuE d3ke2nk2te2nk2tkikj;Duut
25/2d i j

~21!

and

^bi~x,t !bj~x,t !&;E d3k^bi~k,t !bj~2k,t !&Dbb

;E d3ke2nk2te2nk2tkikj;Dbbt
25/2d i j .

~22!

Similar quantities obtained from 3D MHD also show th
same exponents but with different amplitudes.@This is easy
to understand: Calculation of the exponents through the o
loop method depends upon the power counting of the o
loop integrals which are same for both the 3D MHD equ
tions and our simplified model as the projection operatorPi j
that appears in the 3D MHD equations is dimensionless
the nonlinearities in both the equations do not renorma
due to the Galilean invariance of our simplified model a
3D MHD equations~which in turn keeps the power countin
structure same!. Amplitudes of course depend upon the sp
cific models. Similarly, energy spectra obtained in t
steady-state from different models which give same po
counting in the one-loop integrals, when driven by stocha
forces with correlations having same scaling, have sa
scaling properties, see for e.g., Refs.@9,11#.# Note that the
temporal dependences can be scaled out of the mome

FIG. 3. One-loop diagrams contributing to the renormalizat
of Duu andDbb , respectively.
of
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integrals easily as the lower and upper limits of the mom
tum integrals can be extended to 0 and`, respectively.

It is easy to see that all multipoint correlation functio
also do not exhibit any infrared divergence in three dime
sions: Consider, e.g., three-point functions. Even thou
^u(k1 ,t)uj (k2 ,t)us(k3 ,t)&50 at t50, it becomes nonzero
at t.0 as can be easily seen at the one-loop lev
^u(k1 ,t)uj (k2 ,t)us(k3 ,t)& has a tree-level contribution an
next a one-loop contribution. The tree-level part being p
portional to ^ui(k1,0)uj (k2,0)us(k3,0)& is zero because we
have chosen a Gaussian distribution for the initial conditio
The one-loop diagrams are shown in Fig. 4.

The one-loop contribution is however nonzero. It has
form

^u~k1,t !uj~k2,t !us~k3,t !&

;exp@n„2k1
22k2

22~k11k2!
2
…t#k1ik2 j

3~2k1s2k2s!Duuu , ~23!

whereDuuu is the value of the one-loop integral in the lim
k1 ,k2→0, i.e.,

Duuu;E ddq~Duu
3 1Dbb

3 !, ~24!

which is infrared~IR! finite. We can interpret this one-loo
result by saying that the nonlinearities in Eqs.~3! and~4! are
absent but there are nonzero initial three-point correlation
t50, i.e., the effective linear system behaves as if

^ui~k1,0!uj~k2,0!us~k3,0!&[k1ik2 j k3sDuuud~k11k21k3!,
~25!

^bi~k1,0!bj~k2,0!bs~k3,0!&[k1ik2 j k3sDbbbd~k11k21k3!.
~26!

Hence

FIG. 4. One-loop diagrams contributing t
^u(k1 ,t)uj (k2 ,t)us(k3 ,t)&.



re initial

PRE 61 1411DECAYING MAGNETOHYDRODYNAMICS: EFFECTS OF . . .
^ui~x1 ,t !uj~x2 ,t !us~x3 ,t !&[E d3k1d3k2 exp@ ik1•~x12x2!1k2•~x12x3!#^ui~k1 ,t !uj~k2 ,t !us~2k12k2 ,t !&

5E d3k1d3k2 exp@2k1
22k2

22~k11k2!
2#t exp@ ik1•~x12x2!1k2•~x12x3!#k1ik2 j k3sDuuu

;t29/2Ai jsS x12x2

At
,
x12x3

At
D . ~27!

The last step can be easily obtained by using the dimensionless variablesy15k1
2t, y25k2

2t.
Next we consider the four-point functions: We concentrate on^ui(x1 ,t)uj (x2 ,t)us(x3 ,t)ul(x4 ,t)&; the diagrammatic

representations up to the one-loop contributions are given in Fig. 5.
The one-loop integrals in the long-wavelength limit, are

Duuuu;E d3qS Duu
4

n4 1
Dbb

4

m4 D . ~28!

These one-loop contributions can be interpreted as in the previous case of three-point functions, i.e., as if there we
four-point correlations in absence of the nonlinearities:

^ui~k1,0!uj~k2,0!us~k3,0!ul~k4,0!&[Duuuuk1ik2 j k3sk4ld~k11k21k31k4!. ~29!

Similar results can be easily obtained for other four-point functions involving velocity and magnetic fields. Hence,

^ui~x1 ,t !uj~x2 ,t !us~x3 ,t !ul~x4 ,t !&;Duu
2 E d3k1d3k2k1ik1 j k2sk2l exp@22n~k1

21k2
2!t#exp@ ik1•~x12x2!1k2•~x32x4!#

1DuuuuE d3k1d3k2d3k3k1ik2 j k3s~2k1l2k2l2k3l !exp@2n$k1
21k21k3

2

1~k1
21k2

21k3
2!%t#exp@ ik1•~x12x2!1k2~x22x3!1k3~x32x4!#

;Duu
2 t251Duuuut

213/2. ~30!
o
c

c

fo

ed
he
th
In the infinite-Reynolds-number limit, i.e., in the limitn,m
→0, Duuuu→` and hence the second term in the last line
Eq. ~30! dominates. As in the case for the three-point fun
tions four-point functions, are of the form

^ui~x1 ,t !uj~x2 ,t !us~x3 ,t !ul~x4 ,t !&

;t213/2Ai jslS x12x2

At
,
x22x3

At
,
x32x1

At
D . ~31!

HereAi js andAi jsl are third and fourth rank tensors, respe
tively, and^ui(x,t)4&;t213/2. To study decaying MHD, we
extend the definition of equal-time structure functions as
lows:

Su
n~r ,t ![^u@ui~x1 ,t !2ui~x2 ,t !#un& ~32!

and

Sb
n~r ,t ![^u@bi~x1 ,t !2bi~x2 ,t !#un&, ~33!

where r[ux12x2u and t denotes the time that has elaps
after the forcing terms are switched off. We now look at t
general forms of these structure functions. Consider
three-point function first:

Su
3~r ,t ![^u@ui~x1 ,t !2ui~x2 ,t !#u3&. ~34!
f
-

-

l-

e

On expanding the expressions for,Su
3(r ,t) we get the follow-

ing kind of terms: ~i! ^ui(x1 ,t)3& and ~ii !
^ui(x1 ,t)2ui(x2 ,t)&. The first one is given by

^ui~x1 ,t !3&5E d3k1d3k2k1ik2i~2k1i2k2i !

3exp@2$k1
22k2

22~k11k2!
2%t#Duuu

;t29/2, ~35!

whereas the second term has the form

^ui~x1 ,t !2ui~x2 ,t !&5E d3k1d3k2k1ik2i~2k1i2k2i !

3exp@2$k1
22k2

22~k11k2!
2%t#

3exp@ ik1•~x12x2!#Duuu

;t29/2f~r /At !, ~36!

with r[ux12x2u. Thus, it is easy to see thatSu
3(r ,t) has the

structure

Su
3~r ,t ![t29/2F3

u~r /At !, ~37!
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with F3
u(r /At) is a function with dimensionless argume

r /At. We can easily extend our calculation above to see

Su
n~r ,t !;t2zn

u
Fn

uS r

t1/2D , ~38!

Sb
n~r ,t !;t2zn

b
Fn

bS r

t1/2D , ~39!

whereFn
u andFn

b are functions with dimensionless argume
r /At. It is obvious that all these higher-order correlati
functions do not exhibit any anomalous scaling in time; th
temporal behaviors can be obtained by simple dimensio
arguments from the behaviors of the two-point functions
is easy to see that

Su
n;t2~n21!3/22n/2Fn

uS r

t1/2D , ~40!

Sb
n;t2~n21!3/22n/2Fn

bS r

t1/2D , ~41!

i.e., zn
u5zn

b5(n21)3/21n/2, at the level of our one-loop
approximation.

III. NONZERO INITIAL CROSS CORRELATIONS

A. Form of the initial cross correlations

What happens if we makeDi j nonzero? Let us first estab
lish the form ofDi j : Recall that̂ ui(x1 ,t)bj (x2 ,t)& has odd
parity ~sinceu is a polar vector whereasb is an axial vector!.
Hence, it is purely imaginary and is an odd function ofk.
~From now on we will work only in three dimension.! Thus
we choose

Di j 5 iD ube i jpkpka, ~42!

where e i jp is the totally antisymmetric tensor. This is th
simplest analytic form with the desired structure. We co
sider the casesa50 and 2.

FIG. 5. Diagramatic contributions to
^ui(k1 ,t)uj (k2 ,t)us(k3 ,t)ul(k4 ,t)& up to one-loop level. ~a! is
the bare four-point function due to the initial two-point correlation
~b! and ~c! are one-loop contributions.
at

t

r
al
t

-

B. The temporal decay of correlation and structure functions

It is easy to see that the value ofz does not change if
DubÞ0 as no new diagram appears. However, an additio
diagram~Fig. 6! contributes to the effectiveDuu andDbb if
DubÞ0.

This diagram yields the following contribution;

k1ik2 j

16k4 Dub
2 E d3q

~2p!3

2dsnqsqnqa

q2 , ~43!

where we have used the identity

e lmse lmn5~d21!dsn52dsn . ~44!

Naive power counting shows that this contribution is fin
for d53, henceDuu and Dbb are not renormalized even i
DubÞ0, for botha50 and 2. The same conclusion holds f
3D MHD as the one-loop integral remains finite; only th
coefficients change because of factors ofPi j (k). It is quite
interesting to note that for,DubÞ0, there is a diagrammatic
correction toDub ~see Fig. 7!.

The form of the correction is

k1ik2 j

16k4 DuuDubE d3q

~2p!3

qae lmsqsqlqm

q4 ; ~45!

however, this correction vanishes for botha50 and 2 since
the integrand is odd inq. Hence there is no renormalizatio
of Dub and two-point structure functions Eqs.~22! and ~23!
scale ast25/2 just as they do whenDub50.

C. Higher-order correlation and structure functions:
Anomalous temporal scaling

We now consider then-point correlation functions with
n.2. None of the three-point functions have any infrar
divergence. Hence they exhibit simple scaling, i.
^ui(x,t)3&;t29/2. Let us consider the four-point functions
namely,

,

FIG. 6. One-loop diagram contributing to the renormalization
Duu andDbb , which arises whenDubÞ0 ~see text!.

FIG. 7. One-loop diagrammatic correction toDub .
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^ui~x1 ,t !uj~x2 ,t !us~x3 ,t !ul~x4 ,t !&,

^bi~x1 ,t !bj~x2 ,t !bs~x3 ,t !bl~x4 ,t !&,
~46!

^ui~x1 ,t !uj~x2 ,t !bs~x3 ,t !bl~x4 ,t !&,

^ui~x1 ,t !uj~x2 ,t !us~x3 ,t !bl~x4 ,t !&.

At the one-loop level, all of them they will have finite par
~coming from initial auto correlations of velocity and ma
netic fields!. However, the first three of them will have new
infrared-divergent, one-loop contributions ifDubÞ0.

The analytic structure of the divergent one-loop integra
illustrated for one of these correlation functions in Fig.
whose contribution is

^ui~k1!uj~k2!us~k3!ul~k4!&;
k1ik2 j k3sk4l

k8

3E d3p

~2p!3
eacmecdnede feeat

3
pmpnpfptp

a

p8
. ~47!

Isotropy yields

pmpnpfpt5Ap4@dmnd f t1dm fdnt1dmtd f n#, ~48!

so summing over~m,n! and ~f,t! separately we obtain

A5
1

d212d
51/15 ~49!

for d53. Hence naive power counting for the integral in E
~47! yields, fora50,

;
k1ik2 j k3sk4l

15k8
Dub

4 E d3pp4

p8
;k1ik2 j k3sk4lL

21, ~50!

whereL is a momentum scale arising from the lower limit
the integral. Hence it is linearly infrared~IR! divergent for
a50. Fora52 there is no IR divergence as is the case w
Dub50. We analyze the casea50 in detail: There is a dis-
connected diagram also that contributes
^ui(x1 ,t)uj (x2 ,t)us(x3 ,t)ul(x4 ,t)&, which yields

FIG. 8. Divergent one-loop contributions t
^ui(x1 ,t)uj (x2 ,t)us(x3 ,t)ul(x4 ,t)&, ^ui(x1 ,t)uj (x2 ,t)bs(x3 ,
t)bl(x4 ,t)&, ^bi(x1 ,t)bj (x2 ,t)bs(x3 ,t)bl(x4 ,t)&, respectively~see
text!.
s

.

Duuuu;Duu
2 . ~51!

This is finite in thek→0 limit, so the contribution from the
connected part will dominate in thek→0 limit. If we define
the effective four-point correlation to be}Duuuu

;Duuuu
0 k21 @with the choicek5Ak1

21k2
21k3

21k4
2), where

Duuuu
0 is just a constant# then

^ui~k1,0!uj~k2,0!us~k3,0!ul~k4!&

;k1i ,k2 j k3sk4lk
21Duuuu

0 d~k11k21k31k4!.

~52!

Hence one obtains

^ui~x,t !4&;E d3q1d3q2d3q3 exp@2k1
22k2

22k3
2

2~k11k21k3!2#t3k1ik2ik3i

3~k1i1k2i1k3i !Duuuu
0 k21

;t23d/222t21/2;t21/2^ui~x,t !4&uDub50 . ~53!

Similarly ^bi(x,t)4& ; t21/2^ui(x,t)4&uDub50 ,

^ui(x,t)2bi(x,t)2&;t21/2^ui(x,t)2bi(x,t)2&uDub50 . The
other four-point functions are~dimensionally! linearly diver-
gent at the one-loop level; however, the one-loop integ
vanishes because the integrand is odd inp. Hence they will
scale ast213/2. It is now obvious that

^@ui~x1 ,t !2ui~x2 ,t !#4&

;t21/2t213/4AuS x12x2

t1/2 D
;t21/2^@ui~x1 ,t !2ui~x2 ,t !#4&uDub50 , ~54!

FIG. 9. A plot showing the dependence ofzn over n; the line
gives the exponents for the odd order structure functions for
values of Dub and for the even order structure functions wh
Dub50; we also showz4 and z6 in this plot ~circles! when Dub

Þ0 ~for a50).
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^@bi~x1 ,t !2bi~x2 ,t !#4&

;t21/2t213/4AbS x12x2

t1/2 D
;t21/2^@ui~x1 ,t !2ui~x2 ,t !#4&uDub50 . ~55!

Hence we see that these structure functions exhibit ano
lous dynamical scaling ifDubÞ0. Similarly, it follows that
the even-order exponents are

z2n
u 5z2n

b 5
3

2
~2n21!1n2z2n

ano, n>2, ~56!

wherez2n
ano5(2n23)/2 is theanomalouspart of the expo-

nentz2n . By contrast the odd order exponents

zn
u5zn

b5~n21!3/21n/2, for any odd n, ~57!

do not have an anomalous part. In Fig. 9 we present plot
zn versusn for both even and oddn.
so

et

-
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IV. EFFECTS OF INITIAL CONDITIONS WITH
SINGULAR AMPLITUDES FOR THE VARIANCE

In this section we choose initial conditions of the follow
ing form:

^ui~k,0!uj~k8,0!&5Duu

kikj

ks12
d~k1k8!, ~58!

^bi~k,0!bj~k8,0!&5Dbb

kikj

ks12
d~k1k8!, ~59!

and

^ui~k,0!bj~k8,0!&5 iD ube i jp

kp

ky11
d~k1k8!. ~60!

We chooses>y. If y.s then one-loop effectiveDuu and
Dbb will scale ask2y. The effective fluid viscosityñ, and
two-point correlationsD̃uu and D̃uu are given by
1

ñk2 5
1

nk2 1
1

nk2 E d3pp2spipjDuu

n@p21k22~k2p!2# F 1

n@p21~k2p!22k2# S 12
k2

p21~k2p!2D G2
1

2np2 S 12
k2

p2D k•~k2p!

1
1

nk2 E d3pp2spipjDbb

m@p21k22~k2p!2# F 1

m@p21~k2p!22k2# S 12
k2

p21~k2p!2D G2
1

2mp2 S 12
k2

p2D k•~k2p!, ~61!

D̃uu5Duu1D
Duu

2

n2k12s
, ~62!

D̃bb5Dbb1D
Dbb

2

n2k12s
, ~63!

D̃ub5Dub , ~64!
b-

e

re-
re
l
re
whereD is just a numerical constant. The self-consistent
lution is given byn,m;k(12s)/2, with the long-wavelength
behaviors ofDuu , Dbb , and Dub unchanged. Now we can
easily calculate the decay of the total velocity and magn
energy, and cross helicity; these are

Ev~ t !;t2~622s!/~22s!, ~65!

Eb~ t !;t2~622s!/~22s!, ~66!

and

Hc~ t !;t2~622y!/~22s!. ~67!

Here Ev5*ddk1/2̂ uv(k)2&, Eb5*ddk1/2̂ ub(k)2&, Hc

5*ddkuv(k)•b(k)u are total velocity-field and magnetic
field energies, and total cross helicity, respectively. Wh
calculating the temporal decay of these quantities it has b
implicitly assumed that the lower and the upper limits of t
momentum integrals can be extended up to 0 and`, respec-
-

ic

e
en

tively; if this not possible temporal behavior cannot be o
tained by scaling~see next section!.

Decay of fully developed MHD turbulence

In fully developed 3D MHD turbulence one finds, in th
inertial range,

^v i~k,t !v j~k8,t !&;Pi j ~k!k211/3d~k1k8!, ~68!

^bi~k,t !bj~k8,t !&;Pi j ~k!k211/3d~k1k8!. ~69!

Of course, a study of higher-order correlation functions
veals that the velocity and magnetic-field distributions a
not Gaussian@7#. If, however, for the purpose of analytica
tractability, we assume that the initial distributions a
Gaussian with the variances as~for our Burges-type model!

^ui~k,t50!uj~k8,t50!&5Duukikj uku211/322, ~70!

^bi~k,t50!bj~k8,t50!&5Dbbkikj uku211/322, ~71!
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such thatu^u(k,t50)u(2k,t50)&u;u^b(k,t50)b(2k,t50)&u;k211/3 as observed in fully developed MHD turbulence, w
can calculatez and effective two-point correlations as we did above in Sec. III A. For simplicity, we give details only fo
simple Burgers-type model@Eqs.~3!, ~4!#. The effectiven, Duu, andDbb are given by

1

ñk2 5
1

nk2 1
Duu

nk2 E ddp
plpmp211/322k•~k2p!

2nk•p F 1

2np222nk•p S 12
k2

n@p21~k2p!2# D2
1

2np2 S 12
k2

2np2D G
1

Dbb

nk2 E ddp
plpmp211/322k•~k2p!

2mk•p F 1

2mp2 S 12
nk2

2mp2D2
1

2mp2 S 12
nk2

2mp2D G , ~72!

D̃uu5Duu1d
Duu

2

n2k8/3
1d

Dbb
2

m2k8/3
, ~73!

D̃bb5Dbb12d
DbbDuu

m2k8/3
. ~74!
n
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ac-
Hered is a numerical constant. The self-consistent solutio
of these equations are given byn,m;k24/3 and D̃uu5D̃bb ,
implying thatz52/3; this is the same as in the steady sta
With this self-consistent solution, we see that the one-lo
corrections toDuu andDbb are as singular as the bare qua
tities. Hence we ignore their renormalizations. WhenDub is
nonzero, it will contribute to the one-loop corrections ofDuu
and Dbb with the same low-wave-number singularity.Dub
itself does not have any diagrammatic correction, as in
case discussed in Sec. III.

The decay of two-point correlation functions will be o
the form

^ui~x,t !2&;E d3k exp~22nk2/3t !k211/3. ~75!

It is easy to see that, because of the infrared divergenc
the integral, the lower limit cannot be extended to 0, so
will depend upon a lower cutoff~the inverse of which is the
integral scale!. Consequently thet dependence cannot b
scaled out as in the previous case. This problem is remi
cent of the sweeping divergence that appears in a pertu
tive DRG calculation of fully developed turbulence or MH
turbulence @9,12#. In fact this problem begins whe
^ui(k,0)uj (k8,0)&;k222y/32d and y53; then the above in-
tegral becomes log divergent. This type of initial state can
prepared by randomly stirring the system with a stocha
force with a variancek42y2d with y53. In a DRG analysis,
sweeping divergences appear wheny>3 ~but K41 scaling
obtains for y54) @12#. Higher-order correlation function
have more severe divergences, hence their decay also de
strongly upon the integral scale.
n,

3
at-
s
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e
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a-
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end

V. CONCLUDING REMARKS

We have examined the decay of the total kinetic and m
netic energies, and the cross helicity in our shell mod
These quantities decay with power laws in time. In order
understand this behavior analytically, we have employe
one-loop perturbation theory. In the first part of our calcu
tions, we have chosen random initial conditions with the s
tistical properties given in Eqs.~5!, ~6! and ~10!, ~11! ~with
no cross correlations!. We have shown that such initial con
ditions lead to a power-law decay of temporal correlatio
and appropriately defined structure functions. For initial c
relations analytic in the long-wavelength limit no highe
order structure functions show any anomalous scaling. H
ever, on introducing cross correlations^ui(k,0)bj (k8,0)&
@Eq. ~43!# higher-order structure functions exhibit anomalo
scaling. This highlights the importance of cross corrreatio
in the statistical properties of MHD turbulence. We have a
extended our calculations to the case of initial correlatio
with singular variances and discussed the difficulties in
decay of fully developed MHD turbulence. We have argu
that these difficulties are related to the sweeping effect wh
arises in the study of the stochastically driven MHD turb
lence~in the statistically steady state!. It is also worth noting
that we have obtained similar temporal behavior from b
3D MHD and our simplified Burgers-type model. It woul
be interesting to see if our results can be checked experim
tally and numerically.
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