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Decaying magnetohydrodynamics: Effects of initial conditions
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We study the effects of homogenous and isotropic initial conditions on decaying magnetohydrodynamics
(MHD). We show that for an initial distribution of velocity and magnetic-field fluctuations, appropriately
defined structure functions decay as a power law in time. We also show that for a suitable choice of initial cross
correlations between velocity and magnetic fields even-order structure functions acquire anomalous scaling in
time where as scaling exponents of the odd-order structure functions remain unchanged. We discuss our results
in the context of fully developed MHD turbulence.

PACS numbes): 47.27.Gs, 05.45:a, 47.65+a

I. INTRODUCTION have the correct statistical properties of homogenous, isotro-
pic MHD turbulence, which are well decribed by our shell
In the absence of external forcing the fluid cannot main-nodel.
tain its steady state because of the continous dissipation of In a recent papef8] the effects of random initial condi-
energy. The decay of kinetic energy in incompressible fluictions on the decaying solutions of the unforced Navier-
turbulence has been explored in several studée®, e.g., Stokes equation with hyperviscosity have been discussed: It

[1-3]). These studies, principally numerical, indicate that ki-nas been shown that, for an initially Gaussian velocity dis-
netic energy decays as(t—to)~ 7, wheret, is the initial tribution, equal-time two-point correlation functions like

-1
time, i.e., the time when the initial forcing is switched off, {U(x.u(x,t)) decay as~t"~. It has also been shown that,

The value ofy seems to depend on the initial state. Simi_for this particular choice of initial conditions, the theory re-

larly, recent numerical studies of decaying magnetohydrody[nams finite(in a field-theoretic senyqust by renormaliza-

! tion of the two-point vertex functions. However, it is more
namics(MHD) turbulence[3—6]_ also suggest that the total relevant to explore the statistical properties of decaying fluid
energy decays as a power of time. The phenomena of dec

. ; . . A€CYirbulence with ordinary viscosity. It is also important to find
ing MHD turbulence is observed in many different situa- ot how the introduction of magnetic fields influences this
tions. Star-forming clouds are astrophysical examfiBs decay. In this paper we study decaying MHD with ordinary
viscosity; we work with both the three-dimension@D)
MHD equations and a-dimensional generalization of the
_ 1D MHD model introduced in Ref.9]. We show that both
In Ref. [7] we described a shell model for MHD turbu- these models give similar results. In particular, we show that,
|ence, which has all the conservation laws in the inViSCid,in both these models, appropriate|y defined structure func-
unforced limit, has the right symmetries and reduces to thggng decay with a power law in time; this is modulated by a
well-known Gledzer-Ohkitani-YamadéGOY) shell model  scaling function whose form depends on the initial state. In
for fluid turbulence in absence of any magnetic field. In thissec. |1, we describe the equations we work with and the
paper we use our shell model to study decaying MHD tur-pitial conditions we use. For most of the calculations in this
bulence. We begin by solving this set of equations with thesection, we choose initial correlations which are analytic in
external forces and by using the numerical method describeghe |ow-wave-number limit. We choose ordinary viscosities
there. We evolve the shell VelOCiti@% and magnetic fields for both Ve|ocity and magnetic fields. We calculate ﬂ')e
bn till we achieve the nonequilibrium, statistical Steady statenamic exponent and show that it is unaffected by the pres-
whose properties are described in Rgfl. Once we attain  ence of the nonlinearities, i.e., it remains 2. We next show
this state, say at a time=tss, we use the last set of shell that if there is no initial cross correlation between velocity
velocities and magnetic fields, i.e,(ts9 andb,(tsg, asthe  and magnetic fields, correlation functions defined at the same
initial condition for our shell-model study of decaying turbu- spatial point decay with power laws in time and, conse-
lence in which we solve our shell-model equations but withquently, two-point structure functions also decay likewise.
all the forcing terms set equal to zero. We then use the reajso, multipoint correlation functiongand structure func-
sulting time series fow, andb, to determine the total en- tjons) exhibit similar behavior, with simpléand not anoma-
ergy E(t)=3(|v(k,t)|?)+(|b(k,t)|?) and the total cross |ous) scaling in time. In other words, the exponents for high-
helicity HC(t)=(|v(k,t) - b(k,t)|) where the origin of time is  order structure functions are simply related to those of two-
taken to be zero. We find thad(t)~H(t)~t"P, with p  point functions. Another interesting feature is that there is no
=1.2; this is illustrated in the log-log plot of Fig. 1. As we change in the exponents with the introduction of the mag-
have noted above, it is relevant for initial conditions thatnetic field (i.e., the exponents are the same for fluid and
MHD turbulence; only the amplitudes of the correlation or
structure functions change. In the Sec. Ill we show that in the
*Also at Poorna Prajna Institute of Scientific Research, Bangapresence of suitable cross correlations higher-order correla-
lore, India. tions (and consequently structure functipndecay more

Decay of MHD turbulence in a shell model
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10' T r (i) The equations should be invariant undert; X
——X, vV——V, andb—Db, i.e., the velocity field is odd par-
ity and the magnetic field is even parity.

(i) The fields areirrotational vector fields ind dimen-
sion (similar to Burgers velocity field

(iv) The equations in the ideal limit, i.e., in the absence of
any viscosity and any external forcing should conserve all
the scalar conserved quantities of 3D MHD namely the total
energy and the cross helicity. The third conserved quantity,
i.e., the magnetic helicity is zero for irrotational fields.
E The above considerations lead to the following model
equations:

) ay 1 2 1 2_ 2
E-F EVV +§Vb =vV V+fv1 ©)

b
3 — H V(D)= uV 2y, (4)

whose relation to the 3D MHD equations is the same as the

i relation of the Burgers equation to the Navier-Stokes equa-
tion. Herev andb are the velocity and magnetic fields with

FIG. 1. A log-log plot of decay of total energy and cross helicity magnitudesv and b, respectively. These fields aigota-

versus time. tional, i.e., VxXv=0andV Xb=0. These equations together

conserve the total energy J/@/%>+b?)d% and cross helic-
slowly than when there is no cross correlation, i.e., they disity [v-bd%.
play anomalous scaling. In Sec. IV we extend and discuss

10 1 1
0 \] 2

10 10

our results in the context of the decay of fully developed B. Choice of initial conditions
MHD turbulence. In Sec. V we conclude and compare results )
obtained from both 3D MHD and our simplified model. We have(u;(k,t=0))=(b;(k,t=0))=0 by homogeneity

and isotropy. We choose the initial correlations to have the

Il. DECAYING MHD TURBULENCE: THE CASE simple analytic forms

OF ZERO INITIAL CROSS CORRELATION <Vi(k,t:0)VJ‘(k' ,t:0)>: Duukikj S(k+k'), (5)
OF THE VELOCITY AND MAGNETIC FIELDS
A. Construction of a simplified model (bi(k,t=0)bj(k’,t=0))=DppkikjS(k+k'), (6)

The dynamical equations which govern the time evolu-znq
tions of the velocity and magnetic fields in a magnetized
fluid are given by the equations of magnetohydrodynamics, (vi(k,t=0);b;(k’,t=0))=D;j(k) 5(k+k’). (7
namely,
In k space the 3D MHD equations are

ay Vp (VXb)Xb )
E+(V-V)V=— —+T+vv v+f,, (1)
P Gi(P)FIMi(P) 2 Vi(QVi(P— )
b )
ot - VX WXD)Fu Vb, @ =M (P) 2 bi(@)by(p—a)/Amp—vp?vi(p) +fi(p).
wherev andb are the velocity and the magnetic fieldsand ®
wu are fluid and magnetic viscositigs,and p represent pres-
sure and density, anig andf, are external forces. We also aibi(p)=— ipr v(q)Xb(p—q) |i
impose the incompressibility conditioV-v=0 and the q
divergence-free condition on the magnetic fi8db=0. In — 1p2b.(p)+gi(p). 9)
the absence of magnetic fields the MHD equations reduce to ' '
usual Navier-Stokes equation for fluid turbulence. The quantitiesM;; (k) = P;;k,+ P; k; appear to include the

We now briefly present the ideas that go into the construcimcompressibility, Pi; (K) = (& —kik; /k?) is the transverse
tion of the mOdel, which has already been discussed in detaﬂrojection operator, and wave-vector argumqmqlk indi-

in [9]. Since this model is an extension of Burgers equatiorzate spatial Fourier transforms. The initial conditions we use
for fluid dynamics to MHD, it should have the following for 3D MHD are

properties:
(i) Both the equations should be Galilean invariant. (ui(k,t=0)uj(k’,t=0)>=DuukZPij(k) S(k+k’), (10
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<bi(k,t:0)bj(k,,t:0)>:Dbbkzpij(k)é(k‘f‘k,), (11) Dus Dso
(ui(k,t=0)b;(k’,t=0))=Dj;(k)8(k+k'), (12

which ensure the divergence-free conditions, namely,

FIG. 2. One-loop diagrams contributing to the renormalization
ki{ui(k)u;(—k))=0, (13 of ».

ki(bi(k)b;j(—k))=0. (14

, o —exp{ — ut'[p2+ (k—p)?]}b;(p.0)bs(k—p,0)]
We discuss the structure BX; later. For the time being, we
chooseD;;=0. These simple initial conditions, which are T (17
analytic in thek— 0 limit, are enough to elucidate the issues
raised in this section. t
| | | | by(k,t) =€ #by (K 0) ~ ik f dt'f d’p
C. Calculation of effective correlation and structure functions 0

within a one-loop perturbation theory: Temporal scaling xexd — u(t —t’)kz] exp{— t’[vp2+ (k= p)z]}

_— X[Un(p,0)b(k—=p,0) —ui(p,0)by(k—p,0) ]+ -+,
u|(k,t)=e’”k2‘u|(k,0)—%k,fodt’f dp (18

The formal solutions of the Eq$3) and(4) are given by

_ _+7\k2 —4'Tn2 _n\2
xexd —v(t—t")k“]Jexp{— vt'[p°+ (k—p)°]} where the ellipsis in refer to higher-order terms in the series.

X[Umn(p,0)U(k—p,0) We use bare perturbation theory, i.e., after truncating the
series at a particular order, allandb are to be replaced by

+exp{— ut'[p?+ (k—p)?]} their bare values, i.e., b4u(t=0) andGgb(t=0), respec-

Xby(p,0)b(k—p,0) ]+, (15  tively, whereGg(k,t) =€~ Wt anng(k,t):e*“kzt. This is

similar to Ref.[10]. In the steady state of fluid or MHD
) t turbulence, thedynamic exponent & determined by the
bi(k,t)=e"# tb|(k,0)—ik|J dt'J d’p form of the correlations of the driving noise and dimension-
0 ality of the space. For example, when driven by noise corre-
xexf] — u(t—t" )k lexp{ —t'[vp?+ u(k—p)?]} lations of the formk™2 (in 3D NS), one findsz (within a
one-loop dynamic renormalization group calculajioo be
X[Um(p,0)by(k—=p,0)]+- -+, (16)  2/3[11]. What isz when we study decaying MHD turbu-
lence? We calculate this within a one-loop diagrammatic
perturbation theory: In the bare theofiye., when the non-
linear terms are absent=2. If the one-loop corrections to
the response functionse., to the viscositigshave infrared

where ellipsis refer to higher-order terms Similarly the for-
mal solutions of the 3D MHD Eqg9) and(9) are given by

i t
u,(k,t)=e‘”k2tu,(k,0)— EM”SJ dt’f dp divergence at zero external frequency, tlzen2; otherwise
0 z=2. The diagrams shown in Fig. 2 contribute at the one-
wexd — v(t—t" ) k2lexn — vt'Tp2+ (k— D)2 loop level in renormalization of the fluid viscosity
XL vl S lexp =t Tp" (k=p)7} Similar diagrams renormalizg. The effective one-loop
X[uj(p,0)ug(k—p,0) fluid viscosity is given by
|
1 _ 1 Duuj 3 plpmk'(k_p) 1 1 G 1 1 k2
T2 e e 2vk-p | 2vpP—2vk-p\ T Wpirk—p2) " 20p2\ T 20p?
Dbb 3 p|pmk(k_p) 1 sz 1 Vk2
+v_sz PP oukp | 2up?\ Y 2up?)  2ap? | 22 | (19

We see that, in the long-wavelength limit, one-loop correc-is no diagrammatic correction to viscosities in the long-
tions have no infrared divergencedt 3; in other wordsz ~ wavelength limit in 3D MHD. Hence the exponenis un-
remains 2. In the case of the 3D MHD equations, the formsaffected by the nonlinear terms. Therefore, without any loss
of the integrals remain unchanged, only changes appear of generality, we can put=u=1.

the coefficients of the integrals where, in place mp,,, We now calculate the effectiv@,, andD, for d=3 at
appropriate projection operators are present. Thus again thetige one-loop level. The diagrams shown in Fig. 3 contribute
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uu Dbb
FIG. 3. One-loop diagrams contributing to the renormalization D 2,
of Dy, andDyy,, respectively. ; ! Yo ’ \

at the one-loop level t®,,,, These contributions are propor- FIG. 4, One-loop diagrams contributing to

tional to (u(ky,tuj(kz, D ug(ks,t)).
p2p?(p2—k?)2 integrals easily as the lower and upper limits of the momen-
kik;(D2,+ Dﬁb)J d3p? tum integrals can be extended to 0 andrespectively.
p

It is easy to see that all multipoint correlation functions
A also do not exhibit any infrared divergence in three dimen-
~kik,-(Dﬁu+ ng)j dp, (200  sions: Consider, e.g., three-point functions. Even though
(u(kq,t)uj(ky,t)ug(ks,t))=0 att=0, it becomes nonzero
. ) . o at t>0 as can be easily seen at the one-loop level.
which does not have any infrared divergenceity dimen- (u(ky,t)uj(ky,)ug(ks,t)) has a tree-level contribution and

sion The one-loop diagram contributing B, has the same ey 5 one-loop contribution. The tree-level part being pro-
form. For 3D MHD the forms of the one-loop integrals do

_ o X ortional to(u;(kq,0)u;(k2,0)us(ks,0)) is zero because we
not_cha_mge, only the_coefﬁments have appropriate fa_lctors OEave chosen a Gaussian distribution for the initial conditions.
projection operators instead kfk;. On purely dimensional

rounds ford=3 The one-loop diagrams are shown in Fig. 4.
grou Y The one-loop contribution is however nonzero. It has the

form
(ui(x,t)uj(x,t)>~f d3k(u;(k,t)uj( =k, 1))
u(kg,tu:(ky,t)ug(ks,t)
NDUUJ' d3keka2teka2tkikjNDuut75/25ij < 1 it s\h3 >
~expl v(— ki —k3— (K1t ko) ?)tTky Ky
(21
X(_kls_ kZS)DUUU’ (23)
and
3 whereD,,, is the value of the one-loop integral in the limit
<bi<x.t>bj<x,t>>~J d*k(b; (K, t)bj(—K,t))Dypp Ky k,—0, i.e.,

Nf d3ke™ sztef sztkikj~ Dbbtislz‘sij )
(22) Dyuu™ f d%q(D3,+ D3y, (24)

Similar quantities obtained from 3D MHD also show the
same exponents but with different amplitudeBhis is easy \ynich is infrared(IR) finite. We can interpret this one-loop

to understand: Calculation of the exponents through the onggg it by saying that the nonlinearities in E¢®.and(4) are

loop method depends upon the power counting of the On€;pgent byt there are nonzero initial three-point correlations at
loop integrals which are same for both the 3D MHD equat—_q je. the effective linear system behaves as if

tions and our simplified model as the projection oper&tgr

that appears in the 3D MHD equations is dimensionless and

the nonlinearities in both the equations do not renormalize

due to the Galilean invariance of our simplified model and (U;(k1,0)u;(K2,0)ug(K3,0)) =K;iKojKasD yuud(Ki+ Ko+ K),
3D MHD equationgwhich in turn keeps the power counting (25
structure same Amplitudes of course depend upon the spe-

cific models. Similarly, energy spectra obtained in the

steady-state from different models which give same power(b;(k;,0)b;(k2,0)bs(K3,0))=kiKojK3sDpppd(Ki+ Kot Ks).
counting in the one-loop integrals, when driven by stochastic (26)
forces with correlations having same scaling, have same

scaling properties, see for e.g., R€f8,11].] Note that the

temporal dependences can be scaled out of the momentudence
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<Ui(X1,t)Uj(Xz,t)Us(Xs.t»EJ’ d3k1d%k, ex ik - (Xg = X) + K- (X1 = X3) J(Ui (K1, ) Uj(Ka ) us(— k=K, 1))
:J' dk,d%k; exd__ki_kg_(kl"'kz)z]tquikl'(Xl_X2)+k2'(Xl_x3)]k1ik2jk3sDuuu

(27)

X1— Xy X1—X3

N

The last step can be easily obtained by using the dimensionless varfyqbi@t, yzzkgt.
Next we consider the four-point functions: We concentrate{oiix; ,t)u;(x,,t)us(X3,t)ui(X4,1)); the diagrammatic

representations up to the one-loop contributions are given in Fig. 5.
The one-loop integrals in the long-wavelength limit, are

D!, Dpy
Duuuu"'J dsq( VT"’?

These one-loop contributions can be interpreted as in the previous case of three-point functions, i.e., as if there were initial
four-point correlations in absence of the nonlinearities:

Ntigleijs

. (28)

(Ui(k1,00Uj(k2,0)us(ks, 0)ui(K4,0)) =D yyuKiiKojKaska 8(ky+ Kot kst Ky). (29

Similar results can be easily obtained for other four-point functions involving velocity and magnetic fields. Hence,
<Ui(X11t)Uj(X2,t)Us(X3,t)U|(X4,t)>~D5UJ dky d3kokyikyjKaskay exd — 2v(ki+ ko) tlex iy (X1—Xp) +Kyr (X3— Xg)]

+ Duuuuj dk, dk,d3ksky; KojKas( =Ky — kg —kg)exd — V{ki‘F k?+ kg

+ (k2 + K3+ k3) M lexpliky - (X, —Xo) + Ko Xo— X3) + Ka(Xg— X4)]

NDﬁut75+Duuuut713/2- (30)

In the infinite-Reynolds-number limit, i.e., in the limitx  On expanding the expressions f&(r,t) we get the follow-
—0, Dyyu— and hence the second term in the last line ofing  kind of terms: (i) (uj(x.,t)3 and (i)
Eq. (30) dominates. As in the case for the three-point func-(u;(x,,t)%u;(x,,t)). The first one is given by

tions four-point functions, are of the form

(Ui(xg, DU (o, D ug(Xz, DUy (X4, 1)) <Ui(X1,t)3>:f dk; d%koKyiKoi (— kg — ki)
T XlkXZ,XZkXiXS? . @D xexp] — (K~ K5~ (ko + ko) Jt]Duu
~t79/2, (35)

HereAjjs and A5 are third and fourth rank tensors, respec-
tively, and(u;(x,t)*)~t~*¥2 To study decaying MHD, we whereas the second term has the form
extend the definition of equal-time structure functions as fol-

lows:
(U000, = [ ik b~k —kz)
SIrO=(uta 0 -ute 0l (32
and xexi —{ki—k;— (Ki+ko)}t]
S O=(Ibia,H-bioe 0N, (33 e Do eIy

. ~t"%2g(r/\b), (36)
wherer=|x,;—x,| andt denotes the time that has elapsed
after the forcing terms are switched off. We now look at the .. ~_, o
general forms of these structure functions. Consider thg\”th r=[x—x. Thus, itis easy to see thsﬁ(r,t) has the

three-point function first: structure

S3(r,0)=(|[ui(x1,t) — uj(x2, ) ]|3). (34) S3(r,t)y=t=¥%FY(r/ ), (37)
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Dub
Dy Dy Dy
* Duy .Duu ¢ Dy, ? Dy
Duu Dyy Dy, Duh
FIG. 6. One-loop diagram contributing to the renormalization of
@ ®) © D,, andDy,;,, which arises wheml ,,#0 (see text
FIG. 5. Diagramatic contributions to

. B. The temporal decay of correlation and structure functions
(ui(ky,)uj(ka,t)ug(Ks,t)ui(kq,t)) up to one-loop level. (a) is P y l veture functi

the bare four-point function due to the initial two-point correlations, It iS easy to see that the value pfdoes not change if
(b) and(c) are one-loop contributions. D,,# 0 as no new diagram appears. However, an additional
diagram(Fig. 6) contributes to the effectiv®,, andDy,, if

with F4(r/ ) is a function with dimensionless argument Dup#0. _ . o
r/\t. We can easily extend our calculation above to see that 11is diagram yields the following contribution;

KqiKy; 2] d3q 2057ds0nq” 43
Sﬂ(r,t>~tzﬁF3(t%2), 38) 16 ") @m?®q®
where we have used the identity
n —2=b r
SD(r,t)~t ZnFn(tTIZ)’ (39 €ms€imn=(d—1) 8sn=264p. (44)

Naive power counting shows that this contribution is finite
for d=3, henceD,, and Dy, are not renormalized even if
D,p# 0, for botha=0 and 2. The same conclusion holds for
D MHD as the one-loop integral remains finite; only the
oefficients change because of factorsPgf(k). It is quite
interesting to note that fo),# 0, there is a diagrammatic
correction toD,,, (see Fig. 7.
The form of the correction is

whereF} and Fﬁ are functions with dimensionless argument
r/\t. It is obvious that all these higher-order correlation
functions do not exhibit any anomalous scaling in time; their
temporal behaviors can be obtained by simple dimension
arguments from the behaviors of the two-point functions. It
is easy to see that

r
Sﬂ~t_(”_1)3/2_”/2Fﬁ(tT/2), (40)

k1ik2j J d3q qaflmSQSqlqm_ (45
ub

16k* (2m)3 q* ’
r
—(n—1)3/2—n/2b
SBN'E (n=n3fzmn Fn(tT/Z) J (41) however, this correction vanishes for batk=0 and 2 since

the integrand is odd ig. Hence there is no renormalization

. b of D, and two-point structure functions Eq22) and (23
i.e., zyz=zp=(n—1)3/2+n/2, at the level of our one-loop gcgle ag ~52just as they do whe® ,,=0.

approximation.

C. Higher-order correlation and structure functions:
III. NONZERO INITIAL CROSS CORRELATIONS Anomalous temporal scaling
A. Form of the initial cross correlations We now consider the-point correlation functions with
What happens if we mak®;; nonzero? Let us first estab- n>2. None of the three-point functions have any infrared

lish the form ofD;; : Recall that(u;(xy,t)b;(x,,t)) has odd divergegce.iyzence they gxhibit simple .scaling,. ie.,
parity (sinceu is a polar vector whereasis an axial vector ~ (Ui(X,t)")~t""% Let us consider the four-point functions,

Hence, it is purely imaginary and is an odd functionkof ~Namely,
(From now on we will work only in three dimensignThus
we choose Dus Do
Dij = I D Ubeijpkpkay (42) 4 bj uj bj
where €, is the totally antisymmetric tensor. This is the - D, b,

simplest analytic form with the desired structure. We con-
sider the casea=0 and 2. FIG. 7. One-loop diagrammatic correction by, .
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uj ] u 5 bj bj 15
Dy Dyp Dup
*D,, oD, ®Dus 8Dy oD, ® Dy 10 F
o D b N
ug u, b b bg by 51
FIG. 8. Divergent one-loop contributions to
(Ui(Xg, D) uj (X2, 1) ug(Xs, D) U (X4, 1) ), (Ui(xq,t)uj(x2,t)bs(X3,
t)b(X4,t)), (bi(X,t)bj(X2,t)bs(X3,t)bi(X4,t)), respectively(see 0 ' . ' . .
text). 2 3 4 5 6 7 8

n

Ui (X1, D Ui (Xo, ) Ug(X3, 1)U (X4,1)), . .
(Ui(X1, Du; (X2, 1) Us(x3, )t (X4, 1)) FIG. 9. A plot showing the dependence zf over n; the line

bi(Xq . £)b: (X0, 1) DXz, 1) by (Xa, 1)), gives the exponents for the odd order structure functions for all

(bi(x1,1)b; (X2, 1)bs(x3,1)01 (X4, 1)) (46) values of D, and for the even order structure functions when
D,,=0; we also showz, and zg in this plot (circles whenD

Ui(Xq,Dui(Xo,t)bs(X3,t)by(X4,1)), ub 4 6 ub

< I( 1 ) ]( 2 ) S( 3 ) I( 4 )> ¢O(f0r C(ZO).

(Ui (X1, D uj(Xz, D) ug(Xz, )by (X4, 1))

At the one-loop level, all of them they will have finite parts
(coming from initial auto correlations of velocity and mag- _ . . . . . o I
netic fields. However, the first three of them will have new, 1S iS finite in thek—0 limit, so the contribution from the
infrared-divergent one-loop contributions iD ,# 0. connected part will dom_lnate in tHe—_>0 limit. If we define
The analytic structure of the divergent one-loop integral ishe _ €ffective  four-point  correlation to  bexDyy,
illustrated for one of these correlation functions in Fig. 8 ~Dguuk * [with the choicek= \VkI+k3+k3+kj), where

Duuuu’VDﬁu' (51)

whose contribution is DY, is just a constadtthen

KaiKzjkasKay (U (Ky,00U; (Kp, 0 Ug(Ks, 00Uy (K )
<Ui(k1)Uj(kz)Us(ks)Ul(k4)>“T AN A

~Kii Ky kasKatk T D9y uu8(Ka+ Kot Ka+Ky).
d®p 52
X J W €acm€cdn€def€eat (52)
. Hence one obtains
% pmpn::;ptp . (47)

<Ui(X,t)4>~f d3q,d%q,0%0; exd — ki —k5— K3
Isotropy yields

— (Ky+ kot ks) 2]t X KqiKoikai
pmpnpfpt:Ap4[5mn5ft+5mf5nt+ SmtSnl, (48) e s

. . X (Kgi+Kgi+Ka) DYy k
so summing ovefm,n and (f,t) separately we obtain

uuuu

{32212y () . (53)

= =1/15 (49 o
d“+2d Similarly (bi(x,)") ~ t "Au(x,)Hp 0.
for d= 3. Hence naive power counting for the integral in Eq.<ui(x’t)zbi(x’F)2>Nt _1/2<ui(x’t).2bi(x'.t)2>|Dub.:O' .The
(47) yields, for a=0, other four-point functions ar@imensionally linearly diver-
gent at the one-loop level; however, the one-loop integral
KaikojKasKar d3pp* . vanishes because the integrand is odg.iklence they will
T Dubf 08 ~Kyikajkaskg AT, (50)  scale ag ™ **2 It is now obvious that
whereA is a momentum scale arising from the lower limit of ([ui(Xq,t) = Uj(X2,1)]%)
the integral. Hence it is linearly infraredR) divergent for
a=0. Fora=2 there is no IR divergence as is the case with - U2 13iap (Xl_ XZ)
D, ,=0. We analyze the case=0 in detail: There is a dis- 2

connected diagram also that contributes  to 12 B 4
(U (%0, 1)U} (%2, 1) Us(Xs, 1)Uy (x4, 1)), which yields Ui )~ Ui, 0] o =0 (54)
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([bi(X1,0) = bi(X0,1)]%) IV. EFFECTS OF INITIAL CONDITIONS WITH
SINGULAR AMPLITUDES FOR THE VARIANCE
—1/2, —13/4 X1 X2 . . L ..
~t V18 Tz In this section we choose initial conditions of the follow-
ing form:
~ VX [ui(xg, ) — Ui, )] b 0. (B5) Kk
ui(k,0)u;(k’,00) =D y—= 8(k+k'), 58
Hence we see that these structure functions exhibit anoma- (ui(k,0) i( ) Ulps+2 ( ) (58)
lous dynamical scaling iD,,# 0. Similarly, it follows that
the even-order exponents are kik;
5 (bi(k,O)bj(k’,0)>=Dbbﬁ S(k+Kk"), (59
Z8.=720.==(2n—1)+n—2"°, n=2, (56)
2 and
where z5]°=(2n—3)/2 is theanomalouspart of the expo- K
nentz,,. By contrast the odd order exponents (ui(k,0)b;(k",0)) =iD ,p€ijp ky_+pl S(k+k’). (60

u b
=z,=(n—1)3/2+n/2, f ddn, 5 .
Zn=2=(n—1) : or any oddn 7 We chooses=y. If y>s then one-loop effectivdd,, and

do not have an anomalous part. In Fig. 9 we present plots dPop Will scale ask™. The effective fluid viscosity, and
z, versusn for both even and odd. two-point correlation® ,, andD, are given by

L_L+LJ d’pp”*piP;Du
TR U TR | PP+ K= (k—p)?]

Sl el ael
Vot (o= | prr e p?) | e | T R (K P)

1 d*pp~°pip;Dpp 1 k2 2
+v_sz M[P2+k2_(k_p)2][M[p2+(k_p)2—k2](1_ p2+(k—p)2”_Zﬂpz(l_ﬁz)k'(k_p)’ (61)

2

_ D2,
Duu=Dy,tA e (62
D,,=D +AD—gb 63
bb_ bb Vzkl,s’ ( )

Dyb=Duyp, (64)

whereA is just a numerical constant. The self-consistent sotively; if this not possible temporal behavior cannot be ob-
lution is given by v, u~k® =92 with the long-wavelength tained by scalingsee next section

behaviors ofD,, Dy, andD,, unchanged. Now we can

easily calculate the decay of the total velocity and magnetic Decay of fully developed MHD turbulence

energy, and cross helicity; these are In fully developed 3D MHD turbulence one finds, in the

EV(t)~t~(6-29/(2-5) (65) inertial range,

' D -11/3 '
E5(1) (629125, 66 (vi(k,t)vj(k", 1))~ Pj;(k)k S(k+Kk"), (68
g (bi(k,0)b;(k",1))y~P;;(K)k 35k +k’). (69
an
Of course, a study of higher-order correlation functions re-
HE(t)~t~ (6~ 2)/(2s), (67)  veals that the velocity and magnetic-field distributions are
not Gaussiari7]. If, however, for the purpose of analytical
Here EY=[d%1/2(|v(k)?), EP=[d%1/2(|b(k)®, H® tractability, we assume that the initial distributions are
= [d%]v(k)-b(k)| are total velocity-field and magnetic- Gaussian with the variances éer our Burges-type modgl
field energies, and total cross helicity, respectively. While
calculating the temporal decay of these quantities it has been (ui(k,t=0)u;(k’,t=0)) =D kik;|k| 372, (70)
implicitly assumed that the lower and the upper limits of the
momentum integrals can be extended up to 0 @antespec- (bi(k,t=0)b;(k’,t=0))=Dppkik;|k| 1372, (71)
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such thaf(u(k,t=0)u(—k,t=0))|~|(b(k,t=0)b(—k,t=0))|~k 2 as observed in fully developed MHD turbulence, we

can calculate and effective two-point correlations as we did

above in Sec. Il A. For simplicity, we give details only for our

simple Burgers-type mod¢Egs.(3), (4)]. The effectiver, D,,,, andDy, are given by

1 _ 1 D g PIPmP~ %k (k—p) 1 ) k2 L, k2
2w we ) 4P 20k p 2vpZ—20k-p\ T pZr(k—p)Z])  2vp2\ T 20p2
D 711/372k_ k_ 1 k2 1 k2
—bﬁ’fdd PIPmP ( p){ 2(1_ v 2)_ 2(1_ v 2” 72
vk 2pk-p 2up 2upc)  2up 2up
2 2
~ D
uu bb
Dyu=Duuto V2k8/3+ 5M2k8/3’ (73
= DbbDuu
Dyp=Dppt+26————=. 74
bb™ Pbb PECE (74)

Here § is a numerical constant. The self-consistent solutions

of these equations are given byu~k *3andD =Dy,

V. CONCLUDING REMARKS

We have examined the decay of the total kinetic and mag-

implying thatz=2/3; this is the same as in the steady statenetic energies, and the cross helicity in our shell model,
With this self-consistent solution, we see that the one-looprhese guantities decay with power laws in time. In order to

corrections tdD ,, andDy,, are as singular as the bare quan-
tities. Hence we ignore their renormalizations. Whgp, is
nonzero, it will contribute to the one-loop correctionsf,
and Dy, with the same low-wave-number singularit,,,

understand this behavior analytically, we have employed a
one-loop perturbation theory. In the first part of our calcula-
tions, we have chosen random initial conditions with the sta-
tistical properties given in Eq$5), (6) and(10), (11) (with

itself does not have any diagrammatic correction, as in th@o cross correlationsWe have shown that such initial con-

case discussed in Sec. lll.
The decay of two-point correlation functions will be of
the form

<ui(x,t)2>~f d3k exp( — 2vk?3)k 113 (75)

ditions lead to a power-law decay of temporal correlations
and appropriately defined structure functions. For initial cor-
relations analytic in the long-wavelength limit no higher-
order structure functions show any anomalous scaling. How-
ever, on introducing cross correlatiorsi(k,0)b;(k’,0))

[Eq. (43)] higher-order structure functions exhibit anomalous
scaling. This highlights the importance of cross corrreations

It is easy to see that, because of the infrared divergence @f the statistical properties of MHD turbulence. We have also

the integral, the lower limit cannot be extended to 0, so itextended our calculations to the case of initial correlations
will depend upon a lower cutofthe inverse of which is the with singular variances and discussed the difficulties in the
integral scalg Consequently the¢ dependence cannot be decay of fully developed MHD turbulence. We have argued
scaled out as in the previous case. This problem is reminighat these difficulties are related to the sweeping effect which

cent of the sweeping divergence that appears in a perturb?—”ses in the study of the stochastically driven MHD turbu-

tive DRG calculation of fully developed turbulence or MHD '€nce(in the statistically steady statdt is also worth noting
turbulence [9,12]. In fact this problem begins when
(ui(k,0)u;(k’,0))~k? 2¥/3~d andy=3; then the above in-
tegral becomes log divergent. This type of initial state can b

prepared by randomly stirring the system with a stochastid

force with a variancé®~Y~9 with y=3. In a DRG analysis,
sweeping divergences appear wher 3 (but K41 scaling
obtains fory=4) [12]. Higher-order correlation functions

that we have obtained similar temporal behavior from both
3D MHD and our simplified Burgers-type model. It would

be interesting to see if our results can be checked experimen-

ally and numerically.
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